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In a recent letter [1], Samanta, Musharaf Ali and Ghosh set out to understand the low
density failure of the entropy scaling law for the self-diffusion coefficient D conjectured
by Dzugutov [2] and to provide a simple alternative. After an interesting derivation, that
however contains a number of uncontrolled approximations, they arrive at Eq. 7 of [1], which

reduces for a hard sphere fluid to:

b__ 4 (1)
DE 1-— Se/kB

where Dy = Dpg/x is the Enskog diffusion coefficient [3], Dy = 3(kgT/mm)? /8po? the
Boltzmann diffusion coefficient, y the contact value of the pair correlation function, s, the
excess entropy per particle, and A a constant that the authors set to 2.5. Using the excess
entropy s./kp = —(4n — 3n*)/(1 — n)? and contact value xy = (2 —7n)/2(1 — n)* obtained
from the Carnahan-Starling equation of state [4] (n = mpo®/6 - packing fraction), we test
this relation against the hard sphere molecular dynamics simulation results of Erpenbeck
and Wood (EW)[5] - Fig. 1. The disagreement is quite significant and more important the
behavior of the two curves is very different, as (D/Dg) gy, is not a monotonically decreas-
ing function of (—s./kp). The discrepancy cannot be attributed to the authors use of an
approximation for the excess entropy.

The idea of entropy scaling for transport coefficients has a fairly long history [6]. Arguing

on the basis of the molecular “caging” effect Dzugutov [2] proposed the scaling law:

p Bexp (se/kg) (2)

which assumes that the natural length and time scales for diffusion are given by a suitably
defined hard sphere diameter o and the Enskog collision frequency 'y = 402Xp\/m,
with B an universal constant. Unfortunately, the above relation appears to work only in
a limited, high density domain for both hard spheres [7] and realistically modeled fluids
[8]. The problem that arises at low and moderate densities (see Fig. 1) with the scaling
introduced in Eq. 2 can be understood if we observe that the left-hand-side of that equation
can be written up to a multiplicative constant as D/Dgyn®. Therefore, in the limit of
a dilute system, n — 0, this term diverges as 1/n?, while the right-hand-side of Eq. 2
remains finite. This behavior should be expected for any valid definition of ¢ and x and s,
approximation.

The noted pathology of Eq. 2 can be avoided by replacing o as the relevant length scale

with 1/po?, the Boltzmann mean-free path, which should be a reasonable measure of the
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degree of molecular confinement, 1/po? o< /1. The new relationship is:

DiBX — oxp (15¢/kn) (3)

where we introduced a different constant . The test of this suggested dependence is shown
in Fig. 2 for hard spheres, with v = 0.8. Furthermore, Eq. 3 holds for Van der Waals fluids
as well when a reasonable definition for o is used [8].

Samanta et al. also propose a generalized Stokes-Einstein relation connecting the diffusion
coefficient and the viscosity. It is worth pointing out that such a relation is hardly necessary
given that the usual Stokes-Einstein relation with the ’slip’ boundary condition holds well
for both hard spheres [9] and Van der Waals fluids [8].
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FIG. 1: Comparison of the hard spheres diffusion coefficient (simulation results of Ref. [5]) - circles,
with the scaling relation proposed by Samanta et al. [1] (Eq. 1) - dashed line, Dzugutov scaling

law [2] (Eq. 2) - dot-dashed line, and new entropy scaling (Eq. 3) - solid line.



